Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 128(5): 848-857, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38272839

RESUMO

Magnesium clusters exhibit a pronounced nonmetal-to-metal transition, and the neutral dimer is exceptionally weakly bound. In the present study, we formed pristine Mgnz+ (n = 1-100, z = 1-3) clusters and mixed (C60)mMgnz+ clusters (m = 1-7, z = 1, 2) upon electron irradiation of neutral helium nanodroplets doped with magnesium or a combination of C60 and magnesium. The mass spectra obtained for pristine magnesium cluster ions exhibit anomalies, consistent with previous reports in the literature. The anomalies observed for C60Mgn+ strongly suggest that Mg atoms tend to wet the surface of the single fullerene positioning itself above the center of a pentagonal or hexagonal face, while, for (C60)mMgnz+, the preference for Mg to position itself within the dimples formed by fullerene cages becomes apparent. Besides doubly charged cluster ions, with the smallest member Mg22+, we also observed the formation of triply charged ions Mgn3+ with n > 24. The ion efficiency curves of singly and multiply charged ions exhibit pronounced differences compared to singly charged ions at higher electron energies. These findings indicate that sequential Penning ionization is essential in the formation of doubly and triply charged ions inside doped helium nanodroplets.

2.
Phys Rev Lett ; 130(19): 191003, 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37243628

RESUMO

We determine the product of the expansion rate and angular-diameter distance at redshift z=2.3 from the anisotropy of Lyman-α (Lyα) forest correlations measured by the Sloan Digital Sky Survey (SDSS). Our result is the most precise from large-scale structure at z>1. Using the flat Λ cold dark matter model we determine the matter density to be Ω_{m}=0.36_{-0.04}^{+0.03} from Lyα alone. This is a factor of 2 tighter than baryon acoustic oscillation results from the same data due to our use of a wide range of scales (25

3.
J Chem Phys ; 157(4): 044304, 2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35922356

RESUMO

Spontaneous and photo-induced decay processes of HfF5 - and WF5 - molecular anions were investigated in the Double ElectroStatic Ion Ring ExpEriment (DESIREE). The observation of these reactions over long time scales (several tens of ms) was possible due to the cryogenic temperatures (13 K) and the extremely low residual gas pressure (∼10-14 mbar) of DESIREE. For photo-induced reactions, laser wavelengths in the range 240 to 450 nm were employed. Both anion species were found to undergo spontaneous decay via electron detachment or fragmentation. After some ms, radiative cooling processes were observed to lower the probability for further decay through these processes. Photo-induced reactions indicate the existence of an energy threshold for WF5 - anions at about 3.5 eV, above which the neutralization yield increases strongly. By contrast, HfF5 - ions exhibit essentially no enhanced production of neutrals upon photon interaction, even for the highest photon energy used in this experiment (∼5.2 eV). This suppression will be highly beneficial for the efficient detection, in accelerator mass spectrometry, of the extremely rare isotope 182Hf using the 182HfF5 - anion while effectively reducing the interfering stable isobar 182W in the analyte ion 182WF5 -. The radionuclide 182Hf is of great relevance in astrophysical environments as it constitutes a potential candidate to study the events of nucleosynthesis that may have taken place in the vicinity of the solar system several million years ago.

4.
J Phys Chem A ; 125(36): 7813-7824, 2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34436885

RESUMO

The adsorption of up to ∼100 helium atoms on cations of the planar polycyclic aromatic hydrocarbons (PAHs) anthracene, phenanthrene, fluoranthene, and pyrene was studied by combining helium nanodroplet mass spectrometry with classical and quantum computational methods. Recorded time-of-flight mass spectra reveal a unique set of structural features in the ion abundance as a function of the number of attached helium atoms for each of the investigated PAHs. Path-integral molecular dynamics simulations were used with a polarizable potential to determine the underlying adsorption patterns of helium around the studied PAH cations and in good general agreement with the experimental data. The calculated structures of the helium-PAH complexes indicate that the arrangement of adsorbed helium atoms is highly sensitive toward the structure of the solvated PAH cation. Closures of the first solvation shell around the studied PAH cations are suggested to lie between 29 and 37 adsorbed helium atoms depending on the specific PAH cation. Helium atoms are found to preferentially adsorb on these PAHs following the 3×3 commensurate pattern common for graphitic surfaces, in contrast to larger carbonaceous molecules like corannulene, coronene, and fullerenes that exhibit a 1 × 1 commensurate phase.

5.
Molecules ; 26(12)2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34201126

RESUMO

Complexes of atomic gold with a variety of ligands have been formed by passing helium nanodroplets (HNDs) through two pickup cells containing gold vapor and the vapor of another dopant, namely a rare gas, a diatomic molecule (H2, N2, O2, I2, P2), or various polyatomic molecules (H2O, CO2, SF6, C6H6, adamantane, imidazole, dicyclopentadiene, and fullerene). The doped HNDs were irradiated by electrons; ensuing cations were identified in a high-resolution mass spectrometer. Anions were detected for benzene, dicyclopentadiene, and fullerene. For most ligands L, the abundance distribution of AuLn+ versus size n displays a remarkable enhancement at n = 2. The propensity towards bis-ligand formation is attributed to the formation of covalent bonds in Au+L2 which adopt a dumbbell structure, L-Au+-L, as previously found for L = Xe and C60. Another interesting observation is the effect of gold on the degree of ionization-induced intramolecular fragmentation. For most systems gold enhances the fragmentation, i.e., intramolecular fragmentation in AuLn+ is larger than in pure Ln+. Hydrogen, on the other hand, behaves differently, as intramolecular fragmentation in Au(H2)n+ is weaker than in pure (H2)n+ by an order of magnitude.

6.
Molecules ; 26(12)2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34203679

RESUMO

We present a combined experimental and theoretical investigation on Ca+ ions in helium droplets, HeNCa+. The clusters have been formed in the laboratory by means of electron-impact ionization of Ca-doped helium nanodroplets. Energies and structures of such complexes have been computed using various approaches such as path integral Monte Carlo, diffusion Monte Carlo and basin-hopping methods. The potential energy functions employed in these calculations consist of analytical expressions following an improved Lennard-Jones formula whose parameters are fine-tuned by exploiting ab initio estimations. Ion yields of HeNCa+ -obtained via high-resolution mass spectrometry- generally decrease with N with a more pronounced drop between N=17 and N=25, the computed quantum HeNCa+ evaporation energies resembling this behavior. The analysis of the energies and structures reveals that covering Ca+ with 17 He atoms leads to a cluster with one of the smallest energies per atom. As new atoms are added, they continue to fill the first shell at the expense of reducing its stability, until N=25, which corresponds to the maximum number of atoms in that shell. Behavior of the evaporation energies and radial densities suggests liquid-like cluster structures.

7.
J Phys Chem Lett ; 12(17): 4112-4117, 2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-33886323

RESUMO

There are myriad ions that are deemed too short-lived to be experimentally accessible. One of them is SF6+. It has never been observed, although not for lack of trying. We demonstrate that long-lived SF6+ can be formed by doping charged helium nanodroplets (HNDs) with sulfur hexafluoride; excess helium is then gently stripped from the doped HNDs by collisions with helium gas. The ion is identified by high-resolution mass spectrometry (resolution m/Δm = 15000), the close agreement between the expected and observed yield of ions that contain minor sulfur isotopes, and collision-induced dissociation in which mass-selected HenSF6+ ions collide with helium gas. Under optimized conditions, the yield of SF6+ exceeds that of SF5+. The procedure is versatile and suitable for stabilizing many other transient molecular ions.

8.
Phys Rev Lett ; 127(26): 263401, 2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-35029473

RESUMO

In the present work we observe that helium nanodroplets colliding with surfaces can exhibit splashing in a way that is analogous to classical liquids. We use transmission electron microscopy and mass spectrometry to demonstrate that neutral and ionic dopants embedded in the droplets are efficiently backscattered in such events. High abundances of weakly bound He-tagged ions of both polarities indicate a gentle extraction mechanism of these ions from the droplets upon collision with a solid surface. This backscattering process is observed for dopant particles with masses up to 400 kilodaltons, indicating an unexpected mechanism that effectively lowers deposition rates of nanoparticles formed in helium droplets.

9.
Phys Chem Chem Phys ; 21(45): 25362-25368, 2019 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-31702748

RESUMO

We investigate the photodissociation of helium-solvated cesium dimer cations using action spectroscopy and quantum chemical calculations. The spectrum of Cs2He+ shows three distinct absorption bands into both bound and dissociative states. Upon solvation with further helium atoms, considerable shifts of the absorption bands are observed, exceeding 0.1 eV (850 cm-1) already for Cs2He10+, along with significant broadening. The shifts are highly sensitive to the character of the excited state. Our calculations show that helium atoms adsorb on the ends of Cs2+. The shifts are particularly pronounced if the excited state orbitals extend to the area occupied by the helium atoms. In this case, Pauli repulsion leads to a deformation of the excited state orbitals, resulting in the observed blue shift of the transition. Since the position of the weakly bound helium atoms is ill defined, Pauli repulsion also explains the broadening.

10.
J Phys Chem A ; 123(48): 10426-10436, 2019 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-31725298

RESUMO

We use a novel technique to solvate silver cations in small clusters of noble gases. The technique involves the formation of large, superfluid helium nanodroplets that are subsequently electron ionized, mass-selected by deflection in an electric field, and doped with silver atoms and noble gases (Ng) in pickup cells. Excess helium is then stripped from the doped nanodroplets by multiple collisions with helium gas at room temperature, producing cluster ions that contain no more than a few dozen noble gas atoms and just a few (or no) silver atoms. Under gentle stripping conditions, helium atoms remain attached to the cluster ions, demonstrating their low vibrational temperature. Under harsher stripping conditions, some of the heavier noble gas atoms will be evaporated as well, thus enriching stable clusters of NgnAgm+ at the expense of less stable ones. This results in local anomalies in the cluster ion abundance, which is measured in a high-resolution time-of-flight mass spectrometer. On the basis of these data, we identify specific "magic" sizes n of particularly stable ions. There is no evidence, however, for enhanced stability of Ng2Ag+, in contrast to the high stability of Ng2Au+ that derives from the covalent nature of the bond for heavy noble gases. "Magic" sizes are also identified for Ag2+ dimer ions complexed with He or Kr. Structural models will be tentatively proposed. A sequence of magic numbers n = 12, 32, and 44, indicative of three concentric solvation shells of icosahedral symmetry, is observed for HenH2O+.

11.
J Phys Chem A ; 123(44): 9505-9513, 2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31621319

RESUMO

High-resolution mass spectra of helium droplets doped with gold and ionized by electrons reveal HenAu+ cluster ions. Additional doping with heavy noble gases results in NenAu+, ArnAu+, KrnAu+, and XenAu+ cluster ions. The high stability predicted for covalently bonded Ar2Au+, Kr2Au+, and Xe2Au+ is reflected in their relatively high abundance. Surprisingly, the abundance of Ne2Au+, which is predicted to have zero covalent bonding character and no enhanced stability, features a local maximum, too. The predicted size and structure of complete solvation shells surrounding ions with essentially nondirectional bonding depends primarily on the ratio σ* of the ion-ligand versus the ligand-ligand distance. For Au+ solvated in helium and neon, the ratio σ* is slightly below 1, favoring icosahedral packing in agreement with a maximum observed in the corresponding abundance distributions at n = 12. HenAu+ appears to adopt two additional solvation shells of Ih symmetry, containing 20 and 12 atoms, respectively. For ArnAu+, with σ* ≈ 0.67, one would expect a solvation shell of octahedral symmetry, in agreement with an enhanced ion abundance at n = 6. Another anomaly in the ion abundance at Ar9Au+ matches a local maximum in its computed dissociation energy.

12.
J Am Soc Mass Spectrom ; 30(12): 2632-2636, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31650463

RESUMO

We present a study of cationic and protonated clusters of neon and krypton. Recent studies using argon have shown that protonated rare gas clusters can have very different magic sizes than pure, cationic clusters. Here, we find that neon behaves similarly to argon, but that the cationic krypton is more similar to its protonated counterparts than the lighter rare gases are, sharing many of the same magic numbers.

13.
Phys Chem Chem Phys ; 21(28): 15662-15668, 2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-31271179

RESUMO

Interactions of atomic cations with molecular hydrogen are of interest for a wide range of applications in hydrogen technologies. These interactions are fairly strong despite being non-covalent, hence one can ask whether hydrogen molecules would form dense, solid-like, solvation shells around the ion (snowballs) or rather a more weakly bound compound. In this work, the interactions between Cs+ and H2 are studied both experimentally and computationally. Isotopic substitution of H2 by D2 is also investigated. On the one hand, helium nanodroplets doped with cesium and hydrogen or deuterium are ionized by electron impact and the (H2/D2)nCs+ (up to n = 30) clusters formed are identified via mass spectrometry. On the other hand, a new analytical potential energy surface, based on ab initio calculations, is developed and used to study cluster energies and structures by means of classical and quantum-mechanical Monte Carlo methods. The most salient features of the measured ion abundances are remarkably mimicked by the computed evaporation energies, particularly for the clusters composed of deuterium. This result supports the reliability of the present potential energy surface and allows us to recommend its use in related systems. Clusters with either twelve H2 or D2 molecules stand out for their stability and quasi-rigid icosahedral structures. However, the first solvation shell involves thirteen or fourteen molecules for hydrogenated or deuterated clusters, respectively. This shell retains its internal structure when extra molecules are added to the second shell and is nearly solid-like, especially for the deuterated clusters. The role played by three-body induction interactions as well as the rotational degrees of freedom is analyzed and they are found to be significant (up to 15% and 18%, respectively) for the molecules belonging to the first solvation shell.

14.
J Am Soc Mass Spectrom ; 30(10): 1906-1913, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31168747

RESUMO

We report the mass spectrometric detection of hydrogenated gold clusters ionized by electron transfer and proton transfer. The cations appear after the pickup of hydrogen molecules and gold atoms by helium nanodroplets (HNDs) near zero K and subsequent exposure to electron impact. We focus on the size distributions of the gold cluster cations and their hydrogen content, the electron energy dependence of the ion yield, patterns of hydrogenated gold cluster cation stability, and the presence of "magic" clusters. Ab initio molecular orbital calculations were performed to provide insight into ionization energies and proton affinities of gold clusters as well as into molecular hydrogen affinities of the ionized and protonated gold cluster cations.

15.
J Phys Chem A ; 123(21): 4599-4608, 2019 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-31062979

RESUMO

We have doped helium nanodroplets with C60 and either gold or copper. Positively or negatively charged (C60) mM n± ions (M = Au or Cu) containing up to ≈10 fullerenes and ≈20 metal atoms are formed by electron ionization. The abundance distributions extracted from high-resolution mass spectra reveal several local anomalies. The sizes of the four most stable (C60) mAu n± ions identified in previous calculations for small values of m and n ( m ≤ 2 and n ≤ 2, or m = 1 and n = 3) agree with local maxima in the abundance distributions. Our data suggest the existence of several other relatively stable ions including (C60)2Au3± and (C60)3Au4-. Another feature, namely the absence of bare (C60)2±, confirms the prediction that (C60)2M± dissociates by loss of C60± rather than loss of M. The experimental data also reveal the preference for loss of (charged or neutral) C60 over loss of a metal atom from some larger species such as (C60)3M3+. In contrast to these similarities between Au and Cu, the abundance distributions of (C60)3Au n- and (C60)3Cu n- are markedly different. In this discussion, we emphasize the similarities and differences between anions and cations, and between gold and copper. Also noteworthy is the observation of dianions (C60) mAu n2- for m = 2, 4, and 6.

16.
J Chem Phys ; 150(15): 154304, 2019 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-31005067

RESUMO

Solvation of Cs+ ions inside helium droplets has been investigated both experimentally and theoretically. On the one hand, mass spectra of doped helium clusters ionized with a crossed electron beam, HeNCs+, have been recorded for sizes up to N = 60. The analysis of the ratio between the observed peaks for each size N reveals evidences of the closure of the first solvation shell when 17 He atoms surround the alkali ion. On the other hand, we have obtained energies and geometrical structures of the title clusters by means of basin-hopping, diffusion Monte Carlo (DMC), and path integral Monte Carlo (PIMC) methods. The analytical He-Cs+ interaction potential employed in our calculations is represented by the improved Lennard-Jones expression optimized on high level ab initio energies. The weakness of the existing interaction between helium and Cs+ in comparison with some other alkali ions such as Li+ is found to play a crucial role. Our theoretical findings confirm that the first solvation layer is completed at N = 17 and both evaporation and second difference energies obtained with the PIMC calculation seem to reproduce a feature observed at N = 12 for the experimental ion abundance. The analysis of the DMC probability distributions reveals the important contribution from the icosahedral structure to the overall configuration for He12Cs+.

17.
Faraday Discuss ; 217(0): 276-289, 2019 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-30993270

RESUMO

Helium tagging in action spectroscopy is an efficient method for measuring the absorption spectra of complex molecular ions with minimal perturbations to the gas phase spectra. We have used superfluid helium nanodroplets doped with corannulene to prepare cations of these molecules complexed with different numbers of He atoms. In total we identify 13 different absorption bands from corannulene cations between 5500 Å and 6000 Å. The He atoms cause a small, chemically induced redshift of the band positions of the corannulene ion. By studying this effect as a function of the number of solvating atoms we are able to identify the formation of solvation structures that are not visible in the mass spectrum. The solvation features detected using action spectroscopy agree very well with the results of atomistic modeling based on path-integral molecular dynamics simulations. By additionally doping our He droplets with D2, we produce protonated corannulene ions. The absorption spectrum of these ions differs significantly from the case of the radical cations as the numerous narrow bands are replaced by a broad absorption feature that spans nearly 2000 Å in width.

18.
Phys Chem Chem Phys ; 20(33): 21573-21579, 2018 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-30095137

RESUMO

We report an experimental study of water clusters as guests in interactions with clusters of adamantane (Ad) as hosts that occur in doped helium droplets at extremely low temperatures. Separate experiments with pure water as dopant showed ready formation of a distribution of water clusters (H2O)mH+ that peaks at m = 11 and extends beyond m = 100 with local maxima at m = 4, 11, 21, 28 and 30 with (H2O)21H+ being the most anomalous and showing the greatest stability with respect to clusters immediately adjacent in water content. When adamantane is also added as a dopant, extensive hydration is seen in the formation of water/adamantane clusters, (H2O)mAdn+; magic number clusters (H2O)21Adn+ are seen for all the adamantane clusters. Other magic numbers for water clusters attached to adamantane, (H2O)mAdn+, are as for pristine protonated water, with m = 28 and m = 30. The icosahedral shell closure of pure adamantane at n = 13 and 19 appears to be preserved with (H2O)21 replacing one adamantane. (H2O)21Ad12+ and (H2O)21Ad18+ stand out in intensity and demonstrate the interplay of magic number water clusters with magic number adamantane clusters, observed perhaps for the first time in gas-phase cluster chemistry. There was no clear evidence for the formation of clathrate hydrates in which adamantane is trapped within structured water.

19.
J Phys Chem Lett ; 9(10): 2703-2706, 2018 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-29722981

RESUMO

Ionic complexes between gold and C60 have been observed for the first time. Cations and anions of the type [Au(C60)2]+/- are shown to have particular stability. Calculations suggest that these ions adopt a C60-Au-C60 sandwich-like (dumbbell) structure, which is reminiscent of [XAuX]+/- ions previously observed for much smaller ligands. The [Au(C60)2]+/- ions can be regarded as Au(I) complexes, regardless of whether the net charge is positive or negative, but in both cases, the charge transfer between the Au and C60 is incomplete, most likely because of a covalent contribution to the Au-C60 binding. The C60-Au-C60 dumbbell structure represents a new architecture in fullerene chemistry that might be replicable in synthetic nanostructures.

20.
Phys Chem Chem Phys ; 20(14): 9554-9560, 2018 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-29577136

RESUMO

Adducts formed between small gold cluster cations and helium atoms are reported for the first time. These binary ions, Aun+Hem, were produced by electron ionization of helium nanodroplets doped with neutral gold clusters and were detected using mass spectrometry. For a given value of n, the distribution of ions as a function of the number of added helium atoms, m, has been recorded. Peaks with anomalously high intensities, corresponding to so-called magic number ions, are identified and interpreted in terms of the geometric structures of the underlying Aun+ ions. These features can be accounted for by planar structures for Aun+ ions with n ≤ 7, with the addition of helium having no significant effect on the structures of the underlying gold cluster ions. According to ion mobility studies and some theoretical predictions, a 3-D structure is expected for Au8+. However, the findings for Au8+ in this work are more consistent with a planar structure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...